52中文网

手机浏览器扫描二维码访问

第四十九章 杨辉三角(第1页)

杨辉三角形,一目了然,每个数等于它上方两数之和。

研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”

1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”

1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”

1303年朱世杰说:“第n行的m个数可表示为c(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”

1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”

1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。

可用此性质写出整个杨辉三角。

即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。

即c(n+1,i)=c(n,i)+c(n,i-1)。”

1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”

斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”

1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。

11^0=1,11^1=1x10^0+1x10^1=11,11^2=1x10^0+2x10^1+1x10^2=121,11^3=1x10^0+3x10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1x10^5=。”

1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。

1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”

这个被欧洲人称之为帕斯卡三角形。

1708年的pierreRaymonddemontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。

1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”

1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。

1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”

后来人们也称呼这是中国三角形。

二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。

其中是亏格为0的欧拉定理。

对图论有重大帮助。

对很多等差,甚至一级数列、二级数列等等有重要研究。

那三维的杨辉三角,肯定会有更加重要的信息。

高维的杨辉三角,肯定更加有价值。

或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。

或许杨辉三角是任何一个数学的终点。

近下来,就需要解决高维杨辉三角的数列问题了。

有没有一种简单的办法来。

其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。

这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?

本月排行榜
本周收藏榜
热门小说推荐
盛世宠婚:沈少宠妻太凶狠

盛世宠婚:沈少宠妻太凶狠

绝对1心干净,强宠无敌一夜缠绵,游戏小主播迟小宛杠上了浩瀚娱乐的总裁沈定逸。对于未来的电竞女皇迟小宛而言,打游戏,组战队,拿冠军通通不在话下。却偏偏遇上个凶猛霸道的总裁,还是自己的顶头上司。睡了一次,他食髓知味,缠上来,不放手。怎么办?带着包子跑路呀。沈定逸目光灼灼,逼她到墙角撩了我,还想跑?你和包子,我都...

养妖记

养妖记

历史向,仙侠文,小幽默,小吐槽。圈地盘,养妖怪,补天地,终逍遥。因为修仙者过渡掠夺资源,让整个世界已经陷入了崩溃的边缘,就在此时一名普通的二逼文艺青年穿越到了一个出身低微志向远大严于律己宽于待人学富五车才高八斗的乡村贫寒少年身上这位立志要当状元的贫寒少年,立马就变成了二逼青年欢乐多。好在,这位二逼青年也不是一无是处。故事要从一个小山村开始尼玛,老子好不容易考上了秀才,谁告诉我古代也要上山下乡,秀才也要当村官啊!...

我妻世界

我妻世界

当万界降临,当世界受到威胁,没人能独善其身!生物异常!气候异常!地质异常!法则异常!所有异常待消除!成为世界的白细胞,吃掉它们!西方我要守护我们的世界!东方我们要守护共同的家!张某人我要保护我老婆!众人???搞笑诙谐内附怪物手绘图...

透视全能高手

透视全能高手

本来想平淡度过一生的朱笑天因为一次事故彻底明白没有绝对的权利就没有绝对的平淡,机缘巧合之下拥有了透视的逆天异能,又有一位武林高手倾囊相授,看朱笑天如何从平淡中崛起,从此纵横都市NBA商界世界,坐拥各色美人。读者交流群540156768...

古国归墟之西域异闻

古国归墟之西域异闻

归墟,传说为海中无底之谷,谓众水汇聚之处。列子8226汤问渤海之东,不知几亿万里,有大壑焉,实惟无底之谷,其下无底﹐名曰归墟。35年前,我爷爷带领中科院的考古队深入新疆塔克拉玛干沙漠腹地,去考察西域三十六国中大宛国的遗址。考古队在沙漠中遇到罕见的风暴,慌乱中被一个神秘的人影带到了一座古城之内,队员们惊奇...

凶宅事件

凶宅事件

和女友谈了一年,女友始终不让我碰她,说必须要父母同意后才可以。今年过年和女友回了老家见她父母,以为这回可以嘿嘿嘿了,没想到...

每日热搜小说推荐